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Abstract

The equations of motion for the flexural–flexural–torsional–extensional dynamics of a beam are generalized to the field
of axially moving continua by including the effects of translation speed and initial tension. The governing equations are
simplified on the basis of physically justifiable assumptions and are shown to reduce to simpler models published in the
literature. The resulting nonlinear equations of motion are used to investigate the flexural–torsional buckling of translating
continua such as belts and tapes caused by parallel pulley misalignment.

The effect of pulley misalignment on the steady motion (equilibrium) solutions and the bifurcation characteristics of the
system are investigated numerically. The system undergoes multiple pitchfork bifurcations as misalignment is increased,
with out-of-plane equilibria born at each bifurcation. The amount of misalignment to cause buckling and the post-buckled
shapes are determined for various translation speeds and ratios of the flexural stiffnesses in the two bending planes.
Increasing translation speed decreases the misalignment necessary to cause flexural–torsional buckling. In Part II of the
present work, the stability and vibration characteristics of the planar and non-planar equilibria are analyzed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The present work examines the mechanics of translating, beam-like continua that exhibit complex equilib-
ria as a result of boundary misalignment. More specifically, this work considers beams of small aspect ratio for
which the bending stiffnesses in two planes have large disparity, examples of which include belt drives, tape
drives, and band saw blades. Under the action of boundary misalignment in the plane of larger bending
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stiffness, these axially moving beams experience flexural–torsional buckling into a three-dimensional post-
buckled state.

The translating continuum model has direct application to automotive belt-pulley systems undergoing par-
allel pulley misalignment, where the center of one pulley is displaced in the plane of larger belt bending stiff-
ness. Prediction of a threshold misalignment to cause buckling is necessary to establish tolerances for robust
design. Similar boundary misalignment issues arise in tape drives and band saws.

Previous relevant research divides into three areas: flexural–torsional buckling of beams, three-dimensional
equilibrium shapes of beams, and flexural–torsional buckling of translating beams. Of these, flexural–torsional
buckling of stationary beams occupies the most literature. The present research does not consider thin-walled
beams such as I-beams where cross-sectional warping becomes significant (Vlasov, 1961): flexural–torsional
buckling of thin-walled beams occupies its own place in the literature (Trahair, 1993) and is not considered.

The first published works on flexural–torsional buckling known to the authors appeared in 1899 (Michell,
1899; Prandtl, 1899) for thin, rectangular, solid beams. Michell considers five different configurations and in
each case neglects the bending curvature in the plane of greatest flexural rigidity prior to buckling. Because in
each case the beam is loaded parallel to this plane, the effect of bending prior to buckling is neglected. Prandtl
develops the same theory as Michell but generalizes it to include the first order effect of the principal bending
curvature.

Hodges and Peters (1975) derive a general buckling equation that includes effects not considered by Michell
and Prandtl. They then apply a first order approximation to the principal bending curvature and show the
resulting buckling equations are actually simpler than those previously published. An historical review of
the developments between Michell and Prandtl�s work and that of Hodges and Peters is given in Reissner
(1979), where transverse shear deformation is included. Milisavljevic (1995) considers the flexural–torsional
stability of a cantilever in the presence of shape and load imperfections. Hodges (2001) considers flexural–tor-
sional flutter instabilities that arise from a deep cantilever loaded by a lateral follower force at the tip.

In all works discussed, the flexural–torsional stability of specific systems is analyzed. Michell (1899) consid-
ers five systems, Timoshenko (1936) looks at several others, Hodges and Peters (1975) consider only a canti-
lever with a transverse end load, while Milisavljevic (1995) considers a cantilever with a simultaneous
distributed force and an axial force. None include beam translation speed, pre-tensioning, or extension as con-
sidered herein. Even without these effects, however, the authors have not found published work on the con-
figuration considered in the present work, namely buckling due to boundary displacement such as pulley
misalignment.

Much of the literature on flexural–torsional buckling determines the buckling loads without exploring the
three-dimensional shape of the buckled member. Raboud et al. (1996) determined various three-dimensional
equilibrium shapes of an inextensible cantilever beam loaded by constant tip or uniform distributed loads.
Multiple equilibria are found using a numerical shooting procedure. The potential energies of the post-buckled
shapes are used to compare the configurations, but the local stability of each configuration is not addressed.
Later, Raboud et al. (2001) examined the stability of the same system except only constant tip loads are
considered.

The literature on translating beams is vast, but the literature on flexural–torsional buckling of translating
beams is very sparse. The first work in this area was published by Mote (1968), who was motivated by the
buckling of band saw blades under edge loads. He models the ends of the beam as simply supported and ne-
glects flexure in the direction of loading. It is shown that transport velocity lowers the critical edge load. After
this work little, if any, similar work was done in this area.

Other previous related research falls into the areas of axially moving beams and three-dimensional beam
theories. The axially moving beam literature addresses mainly systems undergoing solely transverse or some-
times transverse-extensional motion. A translating beam theory that includes geometric and inertia nonlinear-
ities arising from three-dimensional motion does not exist in the literature. For stationary beams in the
absence of initial tension, Crespo da Silva and Glynn (1978) developed such a model for inextensible beams.
This work was later generalized to extensible beams (Crespo da Silva, 1988). The three-dimensional translating
beam theory developed in the present work further generalizes this model to include translation speed and ini-
tial tension. In addition, the present work applies a different reduction scheme than used in Crespo da Silva
(1988) to simplify the equations of motion.
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The present work focuses on system modeling, equilibria, and bifurcation behavior. After discussing the
system and some underlying assumptions, the three-dimensional kinematics of a translating beam including
geometric and inertia nonlinearities are discussed, followed by derivations of the strain energy and kinetic en-
ergy expressions. Hamilton�s principle is used to obtain the equations of motion. The non-dimensional equa-
tions of motion are simplified on the basis of physically justifiable assumptions for the boundary conditions of
interest. Next, equilibria are determined for changing misalignment. Planar equilibria are determined and
characteristics of the bifurcation points are discussed. The effect of translation speed and flexural stiffness ratio
on the bifurcation points is explored. Following discussion of the planar equilibria, the post-buckled out-of-
plane equilibria are studied. In part II of this paper (Orloske and Parker, this issue), the equations of motion
are linearized about an arbitrary equilibrium configuration and vibration and stability analysis of the equilib-
ria are conducted.

2. Problem formulation

This work models a single span of a belt-pulley or band-wheel system such as occur in belt drives, tape
drives, band saws, etc. The continuum is modeled as a translating beam. It is assumed that there is no inter-
action between the free span being modeled and the bounding pulleys. An example system is illustrated in
Fig. 1. The E1 direction is along the centroidal axis of the undeformed free span. E2 is in the plane of the pul-
leys orthogonal to E1. E3 completes the right-handed orthonormal basis.

The general assumptions regarding the system are listed here, with more specific assumptions given were
used later:

{1} The beam translation speed c remains constant before and after deformation.
{2} Prior to deformation, the tension T is constant and the beam is straight.
{3} The detachment and attachment points, points G and H in Fig. 1, are stationary during deformation.
{4} During deformation the beam does not slip on the pulleys.
{5} Gravitational acceleration, structural damping, and any interactions with the environment are neglected.

Assumption {2} must be explicitly stated because in actuality a continuum wrapping on pulleys has a small
initial curvature in the E1–E2 plane and non-uniform tension due to axial translation and wrapping of a non-
zero flexural stiffness medium about circular pulleys (Kong and Parker, 2003, 2005).

2.1. Kinematics

Let vr denote the reference configuration of the beam when the only deformation is due to initial tension.

This configuration will also be referred to as the trivial equilibrium. vf denotes the final configuration of the
beam. The beam translates in both configurations. The orthonormal triad Ei is centered at point G. Arclength
direction of belt 
translation

E1

E2

E3

G - belt detachment point

H - belt attachment point

pulley 1

pulley 2

Fig. 1. An example of a belt-pulley system where the free span between points G and H represents an arbitrary free span in any belt-pulley
system.
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is measured along the beam�s centroidal axis starting at point G. The arclength in the vr configuration is de-
noted by x and the arclength in the vf configuration is denoted by s.

Fig. 2 shows the beam in the vr and vf configurations. Consider a cross-section in vr parallel to the E2–E3

plane. The centroid of this cross-section is point Mr. The body-fixed Cartesian triad ei is centered at Mr, and ei

aligns with Ei in vr. When deformation occurs, Mr displaces to point Mf. The components of this displacement
with respect to E1, E2, and E3 are u, v, and w, respectively. The orientation of ei with respect to Ei is obtained
by three successive Euler angle rotations. The details of this transformation and the definition of the Euler
angles are displayed in Fig. 3. Triads li and mi are used only as intermediate triads for this transformation.

The following assumptions are made:

{6} Cross-sectional warping due to torsion is neglected.
{7} In-plane cross-sectional distortion, such as that arising from Poisson�s ratio, is neglected.
{8} All cross-sections remain perpendicular to the beam centerline.

Assumption {6} is relaxed later in the development to account for the torsional rigidity of a non-circular
cross-section. Assumptions {6} and {8} together imply that plane sections remain plane. Assumptions {6},
{7}, and {8} together imply that at each position along the centroidal axis the cross-section acts as a two-
dimensional rigid body moving in three-dimensional space. The translation of a cross-section is given by u,
v, and w, and the orientation is described by a = w, /, h. Assumption {8} implies that rotation of the
cross-section is due to bending and torsion alone. Consequently, the six degrees of freedom are not indepen-
dent. Fig. 4 illustrates the following relationships between the first two Euler angle rotations and the compo-
nents of displacement:
tan w ¼ v0

1þ u0
; tan / ¼ �w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ v02
q ð1Þ
χr
Mr

E1

E2

E3

e1e2

e3

Mf

χf

Nr

Nf

Fig. 2. Beam model in the vr and vf configurations. The right side is cut to show an arbitrary cross-section.

E1

E2l2

l1

E3 = l3
l1

m1

l2 = m2

φ

l3
m3

m2

e2

m1 = e1

m3
e3

φ

ψ

ψ

θ

θ

Fig. 3. Sequence of rotations (from left to right) that brings Ei into ei.
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l3
m3

l1

m1

Fig. 4. Relation between rotations and displacement. The vectors Ei, li, and mi are only used to illustrate direction and, only in this figure,
are not necessarily unit vectors.
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where prime denotes differentiation with respect to x. With these constraints there are four independent de-
grees of freedom at each position along the centroidal axis.

Consider the infinitesimal line segment Mr to Nr of length dx on the centroidal axis of the beam in Fig. 2.
The position of Nf with respect to Mf is
rN ¼ ðdxþ u0dxÞE1 þ v0dxE2 þ w0dxE3 ð2Þ

By definition, the length of the line segment Mf to Nf is ds. Using this along with (2) gives
os
ox
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ v02 þ w02

q
; e0 ¼

os� ox
ox

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ v02 þ w02

q
� 1 ð3Þ
where e0 is the axial strain of the centroidal axis.
The angular velocity x at a given cross-section is
Dei

Dt
¼ x� ei ð4Þ
where D/Dt is the material derivative. Using Fig. 3 the angular velocity is
x ¼ ð _wþ w0cÞE3 þ ð _/þ /0cÞl2 þ ð _hþ h0cÞe1 ¼ xne1 þ xge2 þ xfe3 ð5Þ

where the dot denotes differentiation with respect to time. The convective velocity terms w 0c, / 0c, and h 0c result
from the changing position x of a material particle and the material derivative, e.g., Dwðx; tÞ=Dt ¼ _wþ w0c.
The components of x are
xn ¼ ð _hþ h0cÞ � ð _wþ w0cÞ sin /

xg ¼ ð _wþ w0cÞ cos / sin hþ ð _/þ /0cÞ cos h

xf ¼ ð _wþ w0cÞ cos / cos h� ð _/þ /0cÞ sin h

ð6Þ
Kirchhoff�s kinetic analogy (Love, 1944) relating angular velocity to curvature is used to arrive at an expres-
sion for curvature. To invoke the analogy the convective terms in the material derivative are not included. This
is equivalent to vanishing translation speed c, in which case the angular velocity x̂ is defined by
oei

ot
¼ x̂� ei for c ¼ 0 ð7Þ
The components of x̂ on the ei basis are
x̂n ¼ _h� _w sin /

x̂g ¼ _w cos / sin hþ _/ cos h

x̂f ¼ _w cos / cos h� _/ sin h

ð8Þ
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The curvature vector ĵ of the centroidal axis is defined as
oei

os
¼ ĵ� ei ð9Þ
Using Kirchhoff�s kinetic analogy the components of ĵ on the ei basis are obtained by changing the time deriv-
atives in (8) to spatial derivatives. This gives
ĵn ¼ hþ � wþ sin /

ĵg ¼ wþ cos / sin hþ /þ cos h

ĵf ¼ wþ cos / cos h� /þ sin h

ð10Þ
where plus (+) denotes differentiation with respect to s and ĵn, ĵg, and ĵf are components of ĵ. Using (3) and
the chain rule in (10) gives
jn ¼ h0 � w0 sin /

jg ¼ w0 cos / sin hþ /0 cos h

jf ¼ w0 cos / cos h� /0 sin h

ð11Þ
where
ja ¼ ĵað1þ e0Þ a ¼ n; g; f ð12Þ

By comparing (9)–(11), it is clear that (11) expresses the ei components of a vector j defined by
oei

ox
¼ j� ei ð13Þ
The components of j are not the traditional curvatures unless the beam is inextensible (Pai and Nayfeh, 1990),
in which case e0 = 0 and ds = dx. Traditional curvatures describe how the ei basis changes with the arclength s

of the current configuration. The curvatures needed in the remainder of this work describe how the ei basis
changes with the arclength x of the reference configuration.

2.2. Strain energy

Some additional assumptions are

{9} The strains are infinitesimal.
{10} The beam is a linear, elastic continuum.

Let point Pr be any material point on a given cross-section in the reference configuration and let n, g, and f
denote the coordinates with respect to the body-fixed triad ei. When the beam deforms, Pr moves to Pf. Recall
that in vr, ei and Ei align, so the position of Pr relative to the detachment point (G in Fig. 1) is
rr
P ¼ ðxþ ctÞE1 þ gE2 þ fE3 ð14Þ
Assumption {6} is now relaxed and replaced with the following assumption:

{11} Cross-sectional warping due to torsion is neglected with the exception of its influence on the torsional
rigidity.

Considering a static deflection for torsional rigidity purposes, Pr experiences a small axial displacement d

due to warping. This displacement is modeled as
de1 ¼ f ðg; fÞjne1 ð15Þ

where f(g,f) is the warping function and jn is the e1 component of j. The displacement d exists because when a
non-circular cross-section undergoes torsion, plane sections do not remain plane (Timoshenko and Goodier,
1970). As stated in assumption {11}, the sole purpose of including d is to account for the torsional rigidity of a
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non-circular cross-section. To include this effect for a single purpose one must make assumptions to neglect
other effects of axial warping. Eq. (15) is from the problem of static uniform torsion of prismatic bars and
was solved by Saint-Venant (Timoshenko and Goodier, 1970). When torsion is not uniform along the pris-
matic continuum there are additional axial stresses due to local suppression of warping. These additional stres-
ses produce a greater torsional stiffness than would be calculated by Saint-Venant�s uniform torsion solution
for the same jn (Ritchie and Leevers, 1999). If jn is not constant, (15) no longer holds at a given cross-section.
This difference is ignored in this work. Hence, the torsional warping model is summarized by the following
assumption:

{12} A Saint-Venant torsion model is used regardless of the axial variation of jn.

This implies that at a given cross-section, the beam�s torsional cross-sectional warping is decoupled from
bending and is from uniform torsion with a constant value of jn, where jn is the value at that cross-section.

With the above torsion model, the position of Pf relative to G is
rf
P ¼ ðxþ uþ ctÞE1 þ vE2 þ wE3 þ f jne1 þ ge2 þ fe3 ð16Þ
The Lagrangian finite strain tensor L is obtained using
dtr
f
P � dtr

f
P � dtr

r
P � dtr

r
P ¼ dtr

r
P � 2Ldtr

r
P ð17Þ
where dta is the differential of a holding time fixed. The differential elements are
dtr
r
P ¼ dxE1 þ dgE2 þ dfE3 ð18Þ

dtr
f
P ¼ ð1þ u0ÞE1 þ v0E2 þ w0E3½ �dxþ jn

of
og

dgþ of
of

df

� �
e1

þ dge2 þ dfe3 þ ðf jne01 þ ge02 þ fe03Þdx ð19Þ
Noting that the axial strain of the centerline (g = f = 0) is in the e1 direction and using (3) yields
ð1þ u0ÞE1 þ v0E2 þ w0E3 ¼ ðe0 þ 1Þe1 ð20Þ

Use of (13) and (20) in (19) gives
dtr
f
P ¼

of
og

dgjn þ
of
of

dfjn þ ðe0 þ 1Þdx
� �

e1 þ dge2

þ dfe3 þ ½ðjne1 þ jge2 þ jfe3Þ � ðf jne1 þ ge2 þ fe3Þdx� ð21Þ
Eqs. (18) and (21) are used on the left-hand side of (17), which is then factored to yield the following compo-
nents of L = [eij] with respect to the Ei � Ej basis
e11 ¼ e� þ 1

2
½ðe�Þ2 þ j2

nðg� f jgÞ2 þ j2
nðf jf � fÞ2�

e22 ¼
1

2

of
og

� �2

j2
n; e33 ¼

1

2

of
of

� �2

j2
n; e23 ¼

1

2

of
og

of
of

j2
n

e12 ¼
1

2
jn ð1þ e�Þ of

og
þ f jf � f

� �
e13 ¼

1

2
jn ð1þ e�Þ of

of
þ g� f jg

� � ð22Þ
where e* = e0 + fjg � gjf is the axial strain of any line segment off the centerline. From assumption {9}, the
strains are infinitesimal and it follows that e*, jn(of/og), and jn(of/of) are small. The strains are linearized in
these quantities. As stated in {11}, f is only included to account for the torsional rigidity, and assumption {12}
further states the torsional rigidity of interest is that which arises from a Saint-Venant torsion model. Since
Saint-Venant torsion models pure torsion and not a combination of torsion and bending, the terms fjg and
fjf arising from coupled bending and torsion are removed in adherence to assumptions {11} and {12}. With
these simplifications, (22) reduces to
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e11 ¼ e� þ 1

2
j2

nðg2 þ f2Þ; e22 ¼ 0; e33 ¼ 0

e12 ¼
1

2
jn

of
og
� f

� �
; e13 ¼

1

2
jn

of
of
þ g

� �
; e23 ¼ 0

ð23Þ
To determine the strain energy, the following additional assumptions are stated:

{13} The material is isotropic.
{14} The material properties are homogeneous.
{15} The cross-section is symmetric about each of the E1–E2 and E1–E3 planes and does not vary along the

length of the beam.

The initial tension T causes the beam to have uniaxial stress T/A in the reference configuration, where A is
the cross-sectional area. When the beam experiences a strain e11 away from vr, the initial tension causes a
strain energy per unit volume of (T/A)e11. The strain energy per unit length is
U ¼ 1

2

Z Z
A

2
T
A

e11 þ r11e11 þ r22e22 þ r33e33 þ r12c12 þ r13c13 þ r23c23

� �
dgdf ð24Þ
where rij are stress increments of vf relative to vr, and cij are engineering shear strain components that are re-
lated to the tensorial shear strain components by eij = cij/2. Using assumptions {7} and {13}, the constitutive
equations are
r11 ¼ Ee11; r12 ¼ Gc12; r13 ¼ Gc13 ð25Þ

where E and G are Young�s modulus and the shear modulus, respectively. Due to assumption {14} the mass
centroid and area centroid of a cross-section coincide, giving
Z Z

A
gfdgdf ¼

Z Z
A

gdgdf ¼
Z Z

A
fdgdf ¼ 0 ð26Þ
Insertion of (23), (25) and (26) into (24) gives
U ¼ 1

8
j4

nE
Z Z

A
ðg2 þ f2Þ2 dgdfþ 1

2
j2

nE
Z Z

A
ðfjg � gjfÞðg2 þ f2Þdgdfþ 1

2
j2

nDn þ
1

2
j2

gDg þ
1

2
j2

fDf

þ 1

2
e2

0EAþ 1

2
j2

n e0 þ
T

EA

� �
ðDg þ DfÞ þ Te0 ð27Þ
where cross-sectional area and the flexural rigidities are defined as
A ¼
Z Z

A
dgdf; Dg ¼ E

Z Z
A

f2 dgdf; Df ¼ E
Z Z

A
g2 dgdf ð28Þ
and where torsional rigidity is defined as (Love, 1944)
Dn ¼ G
Z Z

A

of
of
þ g

� �2

þ of
og
� f

� �2
" #

dgdf ð29Þ
Values of the integral in (29) are tabulated for various cross-sectional shapes (Timoshenko and Goodier,
1970). Due to assumption {15}, moments of area of order three are zero, and the second term on the
right-hand side of (27) vanishes. The first term on the right-hand side of (27) contains a higher order moment
of area and its contribution to the equations of motion is neglected. This is justified when the cross-sectional
dimensions are small compared to the length. The assumption is

{16} moments of area of order four are neglected.
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The final expression for strain energy per unit length is
U ¼ 1

2
j2

nDn þ j2
gDg þ j2

fDf þ e2
0EAþ j2

n e0 þ
T

EA

� �
ðDg þ DfÞ þ 2Te0

� �
ð30Þ
where the ji are defined in (11).

2.3. Kinetic energy

The kinetic energy per unit length of a translating beam is given by
K ¼ 1

2

Z Z
A

_rf
P � _r

f
Pqdgdf ð31Þ
where q is density and rf
P is defined in (16). Eq. (16) is decomposed as
rf
P ¼ rE þ re ð32Þ
where rE and re are the terms expressed in (16) on the Ei and ei bases, respectively. It follows that
_rf
P � _r

f
P ¼ _rE � _rE þ _re � _re þ 2_rE � _re ð33Þ
Recognizing that the material derivative introduces convective velocity terms, _rE is
_rE ¼ ð _uþ u0cþ cÞE1 þ ð _vþ v0cÞE2 þ ð _wþ w0cÞE3 ð34Þ

Using assumption {7}, the terms _ge2 and _fe3 are zero in the expression for _re. From assumption {11}, the con-
tribution of cross-sectional warping to kinetic energy is neglected. With these assumptions and (4), the expres-
sion for _re is
_re ¼ ðxgf� xfgÞe1 � xnfe2 þ xnge3 ð35Þ

Using (34) and (35), when the term 2_rE � _re in (33) is integrated over the cross-section in (31) it vanishes due to
(26). Using (31)–(35) and assumption {14}, the kinetic energy per unit length is
K ¼ 1

2
fm½ð _uþ u0cþ cÞ2 þ ð _vþ v0cÞ2 þ ð _wþ w0cÞ2� þ jnx

2
n þ jgx

2
g þ jfx

2
fg ð36Þ
where m is the mass per unit length and the mass moments of inertia per unit length are defined as
jg ¼ q
Z Z

A
f2 dgdf; jf ¼ q

Z Z
A

g2 dgdf; jn ¼ jg þ jf ð37Þ
2.4. Nonlinear equations of motion

The variation of the specific Lagrangian l = K � U is
dl ¼
X15

i¼1

ol
ozi

dzi ð38Þ
where the zi are components of
z ¼ fw;/; h; _u; _v; _w; _w; _/; _h; u0; v0;w0;w0;/0; h0gT ð39Þ
The holonomic constraints in (1) yield
dw ¼ ow
ou0

du0 þ ow
ov0

dv0; d/ ¼ o/
ou0

du0 þ o/
ov0

dv0 þ o/
ow0

dw0 ð40Þ
The system studied in this work is not subjected to any non-conservative forces, and the misalignment caus-
ing buckling occurs as an imposed inhomogeneous boundary condition at x = L; there is no virtual work
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expression. Application of Hamilton�s principle,
R t2

t1

R L
0

dldxdt ¼ 0, yields the following equations of motion
and boundary conditions:
G0a ¼ Aw
ow
oa0
þ A/

o/
oa0
� ol

oa0

� �0
¼ mð€aþ c _a0Þ a ¼ u; v;w

Ah ¼ 0

ð41Þ

Aa ¼
o2l

o _aot
þ o2l

oa0 ox
� ol

oa
; a ¼ w;/; h ð42Þ

Hudu0 þ Hvdv0 þ H wdw0 � Gudu� Gvdv� Gwdwþ ol
oh0

dh

� �
x¼i

¼ 0; i ¼ 0; L ð43Þ

H a ¼
ol
ow0

ow
oa0
þ ol

o/0
o/
oa0

; a ¼ u; v;w ð44Þ
When tension and translation speed are zero, (41)–(44) reduce to the equations in Crespo da Silva (1988) for a
stationary, untensioned, flexural–flexural–torsional–extensional beam. (The equation for the Lagrange multi-
plier in Crespo da Silva (1988) has a typographical error that is addressed in a footnote in Crespo da Silva
(1991).)

The non-dimensional variables used in this work are
~a ¼ a
L
ða ¼ a; x; u; v;wÞ; ~t ¼ t

ffiffiffiffiffiffiffiffi
T

mL2

r
; ~c ¼ c

ffiffiffiffi
m
T

r
bn ¼

Dn

TL2
; bg ¼

Df

Dg
; bf ¼

Df

TL2
; l ¼ T

EA

~ja ¼
ja

mL2
; ~ja ¼ jaL; ~xa ¼ xa

ffiffiffiffiffiffiffiffi
mL2

T

s
ða ¼ n; g; fÞ

ð45Þ
where a is the boundary misalignment along E3. The expressions for ~ja and ~xa take the same form as (11) and
(6) with the primes denoting the derivative with respect to ~x, the dots denoting the derivative with respect to ~t,
and all c�s replaced by ~c. The dimensionless specific Lagrangian is
~l ¼ l
T

¼ 1

2
½ð _~uþ ~u0~cþ ~cÞ2 þ ð _~vþ ~v0~cÞ2 þ ð _~wþ ~w0~cÞ2 þ ~jn ~x2

n þ ~jg ~x2
g þ ~jf ~x2

f �

� 1

2
bn~j2

n þ
bf

bg

~j2
g þ bf~j

2
f þ

1

l
e2

0 þ ~j2
nðe0 þ lÞ

bf

bg

þ bf

� �
þ 2e0

� �
ð46Þ
where again prime denotes the derivative with respect to ~x and dot denotes the derivative with respect to ~t.
Hamilton�s principle then takes the form

R~t2
~t1

R 1

0
d~ld~xd~t ¼ 0. The non-dimensional equations of motion and

boundary conditions are the same as in (41)–(44) except non-dimensional quantities are used and all deriva-
tives are with respect to non-dimensional space and time.

2.5. Application to parallel pulley misalignment

For the remainder of this work, the three-dimensional translating beam theory developed in previous sec-
tions is applied to a continuum (belt, tape, band saw, etc.) undergoing parallel pulley misalignment. Under
parallel pulley misalignment, the center of one pulley is displaced an amount a in the E3 direction.

Both span boundaries are modeled as clamped in the E1–E2 and E1–E3 planes. Assumptions {3} and {4}
imply the beam adheres to the surface of the pulley beyond points G and H (Fig. 1). This is reasonable con-
sidering factors such as tension and frictional forces contribute to belt adhesion on the pulleys. Also, many
belts have ribs that ride in grooves on the pulleys. At point G, for example, this provides a contact force
against motion in the E3 direction and adds frictional forces against motion in the E2 direction. Because
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the assumptions imply the belt adheres to the surface of the pulley directly beyond the span boundaries, the
clamped boundary condition avoids a slope discontinuity at the boundaries.

The misalignment is modeled as an inhomogeneous boundary condition occurring at one end. The bound-
ary conditions are
~ujx¼i ¼ ~vjx¼i ¼ hjx¼i ¼ ~v0jx¼i ¼ ~w0jx¼i ¼ 0; i ¼ 0; 1

~wjx¼0 ¼ 0; ~wjx¼1 ¼ ~a
ð47Þ
2.6. Reduction of the equations of motion

The full nonlinear equations of motion given by (41) have structural features that make their solution dif-
ficult for the boundary conditions used in this work. In this section these difficulties are discussed and a reduc-
tion of the equations to a simpler form that avoids these issues is presented. Unless otherwise stated, non-
dimensional variables will be used and the tildes dropped for convenience.

When (41) are fully expanded the resulting equations contain four spatial derivatives of u, v, and w and
three spatial derivatives of h. The boundary conjunct (43), however, yields only one boundary condition at
each of x = 0, 1 for h. Only two boundary conditions are apparent for a third order boundary value problem
for h. In addition, Hu in (43) vanishes for clamped–clamped boundary conditions. In other words, the natural
boundary conditions associated with u 0 at x = 0, 1 are automatically satisfied for clamped–clamped bound-
aries. The cause of this can be noted in (44) where the term ow/ou 0 = 0 when v 0 = 0 and the term o//
ou 0 = 0 when w 0 = 0. Therefore, when (41) are fully expanded in terms of u, v, w, and h, boundary conditions
appear to be missing. While Hamilton�s principle will generate a well-posed problem with sufficient equations
and boundary conditions to obtain a solution, these occur here in an imbalanced form where there are three
fewer boundary conditions than total order of the spatial derivatives in the governing equations. This compli-
cates any numerical or analytical solution. In a simpler system, mathematical manipulations would likely al-
low reformulation in a balanced form, but the length of the present equations precludes this. This issue is
resolved, however, by a physically justifiable assumption that is later verified.

All terms containing h000 originate from higher order terms in jn and xn. jn in (11) contains two distinct
components, namely, the cross-sectional twist, h 0, and the geometric torsion, w 0 sin/. The cross-sectional twist
results from the final Euler angle rotation of the cross-section about the e1 axis. The geometric torsion arises
from centerline displacements regardless of cross-sectional considerations and is non-zero only when the cen-
terline has both curvature in the e1 � e3 (e1 � e2) plane and non-zero displacement in the e2 (e3) direction. The
expression for xn contains analogous components. The terms containing h000 originate from the geometric tor-
sion components of jn and xn.

When a clamped–clamped beam undergoes transverse displacement, midplane stretching is important, so
the inextensibility assumption was not used. The axial stiffness of a belt, band saw, tape drive, or the like is
typically much higher than the flexural and torsional stiffnesses. Due to this property, when a clamped–
clamped beam experiences transverse displacement, midplane stretching is resisted by the relatively high axial
stiffness. From (3), axial strain is not a function of h, so a high axial stiffness does not resist twist. For this
reason, when the beam buckles out-of-plane as in the problem of interest, one expects the twist to be much
larger than the geometric torsion. Therefore, the following assumption is made:

{17} The geometric torsion components of jn and xn are neglected.

Under this assumption
jn ¼ h0

xn ¼ _hþ h0c
ð48Þ
In general, h is not a true twisting angle, as stated in Pai and Nayfeh (1990): ‘‘It can be shown that any
twist variable [h], defined using a sequence of three Euler-like rotations or even two sequential rotations, is
not a real twisting angle because the deformations u, v, w, and [h] do not occur in sequence as assumed in
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the mathematical model that uses Euler angles.’’ A true cross-sectional twist angle, c, can be defined by
jn = c 0. As a consequence of assumption {17} h becomes a true twist angle.

For assumption {17} to be appropriate the geometric torsion must be small and small compared to the
twist. The geometric torsion is a function of the derivatives of u, v, and w. Therefore, u, v, w, and their deriv-
atives are ordered as small quantities using the expansion parameter e where e� 1 is a small parameter of
magnitude e ¼ Oð ffiffiffilp Þ. Under this definition, the strain l = T/EA that brings the system from the undeformed
configuration into the tensioned reference configuration is O(e2). Due to the boundary conditions (47), longi-
tudinal displacement occurs only as a result of axial strain arising from transverse displacement. Thus, it is
reasonable to order u and its derivatives as O(e2), while v, w, and their derivatives are O(e). h and its derivatives
are specified as being O(1).

Taylor series expansion of the equations of motion, including the reduced expressions in (48), is performed
through order e2. The reduced equations of motion and boundary conditions are
bG 0a ¼ €aþ _a0c; a ¼ u; v;wbGh ¼ 0
ð49Þ

ð bH udu0 þ bH vdv0 þ bH wdw0 � bGudu� bGvdv� bGwdwþ bH hdhÞx¼i ¼ 0; i ¼ 0; 1 ð50Þ
where expressions for the bGa and bH a are given in Appendix A. As a result of this reduction u000 and uIV (fourth
spatial derivative) terms are removed. In addition, by invoking assumption {17} the highest spatial derivative
of h is now two. Like Hu in (43), bH u in (50) also vanishes for clamped–clamped boundary conditions. Con-
sequently, for a clamped–clamped beam the equations of motion are reduced to a balanced form in which
the number of boundary conditions matches the number of spatial derivatives.

The equations of motion reduce to the well-known equations for flexural–extensional motion of a translat-
ing, tensioned beam (Mote and Wu, 1985; Wang and Mote, 1986; Wickert, 1992). To reduce (49) to the flex-
ural–extensional model, h, w, and mass moments of inertia are set to zero. The resulting equations are cast in
dimensional form for comparison, giving
m€uþ 2mc _u0 þ mc2u00 � EAv0v00 � EAu00 � Dfv0vIV � Dfv00v000 þ 2EAv0v00u0 þ EAv02u00 þ 3

2
EAv03v00 þ Tv0v00 ¼ 0

ð51Þ

m€vþ 2mc _v0 þ mc2v00 � EAu0v00 � EAu00v0 � 3

2
EAv02v00 � Tv00 þ DfvIV ¼ 0 ð52Þ
Eqs. (51) and (52) match the corresponding equations in Mote and Wu (1985), Wang and Mote (1986) and
Wickert (1992) with the exception that (51) contains the additional terms ðEAv02u0Þ0 þ 3

2
EAv03v00 þ Tv0v00�

ðDfv0v000Þ0. The term �(Dfv
0v000) 0 originates from higher order terms in jf included in the present work. The

other additional terms originate from higher order terms in the axial strain. To get exact agreement with
the previously published model e0 in (3) and jf in (11) must be reduced to
e0 ¼ u0 þ 1

2
v02

jf ¼ v00
ð53Þ
3. Equilibrium analysis

The equations governing steady motions (referred to herein as equilibria) are obtained by setting all time
derivatives to zero in (49). The boundary conditions are given in (47). The deformation results from boundary
displacement in the E3 direction, wjx=1 = a in dimensionless form.

Because the equilibrium equations are linear in the highest spatial derivatives, the boundary value problem
can be expressed in the first order form
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y0 ¼ f ðyÞ ð54Þ
y ¼ fu; u0; v; v0; v00; v000;w;w0;w00;w000; h; h0gT ð55Þ
The equilibrium equations are solved using continuation and bifurcation software (Doedel et al., 1997). With
the trivial equilibrium as the initial solution and the boundary misalignment as the continuation parameter,
the evolving equilibrium solution is followed as the misalignment changes. The critical buckling misalignments
at which non-planar equilibria bifurcate from the planar equilibrium are detected. By switching branches at
the bifurcation point, the bifurcated branch is followed and the non-planar post-buckled shape is determined
for increasing misalignment. The stability of the branches is simply given in this paper with a more detailed
discussion of its determination given in Part II of this work (Orloske and Parker, this issue).

The baseline numerical values of the system parameters are given in Table 1. Unless otherwise stated, these
parameter values are used.

3.1. Planar equilibrium solutions

When continuation is performed in the misalignment parameter a, one equilibrium solution of the beam
remains planar (v = h = 0) with no cross-sectional twist or transverse deflection in the E2 direction. The effect
of translation speed on the planar equilibrium is assessed by using the translation speed c as the continuation
1
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Fig. 5. The L2-norm of planar equilibrium solutions for different misalignments.
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parameter. Fig. 5 illustrates this effect for four different misalignments. The L2-norm of the state vector y in
(55) is defined by
kyk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

X12

i¼1

y2
i dx

vuut ð56Þ
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where the yi are components of y. In Fig. 5 the planar solutions for the selected misalignments undergo
little change for speeds up to approximately c = 5. When the speed is increased further the solutions change
rapidly. As misalignment is increased, this region of rapid change occurs at lower speeds. This implies that the
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Fig. 10. The solution at point g in Fig. 9. In the three-dimensional plot, the width of the beam is set to 0.04 to show cross-sectional
rotation.
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influence of translation speed on the planar equilibrium solution occurs at lower speeds as the misalignment is
increased.

Fig. 6 shows three solutions for a misalignment of a = 0.005 and illustrates how the planar equilibrium
changes as speed is increased. As the translation speed increases, the shapes of the u and w solutions change
and the magnitude of the u solution increases rapidly, although it remains small compared to w.



Fig. 11. The solution at point q in Fig. 9. In the three-dimensional plot, the width of the beam is set to 0.04 to show cross-sectional
rotation.
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The critical buckling misalignments occur when new equilibria bifurcate from the planar solution. The
bifurcated equilibria are non-planar. Fig. 7 displays these critical misalignments for translation speeds of
0 6 c 6 1.3. The critical misalignments all decrease monotonically with increasing speed. The rate of decrease
accelerates at higher speeds, indicating that the effect of speed on the critical misalignment is more pronounced
as speed increases. In addition, the critical misalignments approach zero for large speeds. The speeds at which



Fig. 12. The solution at point r in Fig. 9. In the three-dimensional plot, the width of the beam is set to 0.04 to show cross-sectional
rotation.
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the critical misalignment loci touch the abscissa in Fig. 7 are the critical speeds for zero misalignment. As will
be discussed in Part II (Orloske and Parker, this issue), these zero misalignment critical speeds are the same as
the well-known critical speeds common in the axially moving materials literature, that is, the speeds at which
an eigenvalue of the dynamic equations linearized about the trivial solution vanishes. The first zero misalign-
ment critical speed corresponds to the speed at which the trivial equilibrium becomes unstable and occurs at
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c = 1.0288. For speeds less than c = 1.0288, planar equilibrium stability is lost at the first branch point for
increasing misalignment. For example, at a speed of c = 0.3 the critical misalignment is a = 0.0122. The region
in the lower left of Fig. 7 indicates the region where the planar equilibrium is the only one, and it is stable.

The critical misalignment loci in Fig. 7 consistently cross in pairs of two. This causes the post-buckled
shapes to change the order in which they occur. For example, when the misalignment a = 0.004 is specified
and speed is increased, the first two detected critical speeds correspond to particular post-buckled shapes.
If instead the misalignment is a = 0.002 and speed is increased, the occurrence of the post-buckled shapes
exchanges order.

In addition to speed, the flexural stiffness ratio bg (see (45)) greatly influences the critical misalignment. One
expects that as the beam becomes more compliant in the e1–e2 plane (i.e., small bg), the critical misalignment
decreases. This expectation is supported in Fig. 8, which demonstrates that as the ratio of flexural stiffnesses
approaches zero, the lowest critical misalignment approaches zero in a manner asymptotic to the vertical axis
(inset of Fig. 8). The shape of the loci for bg 	 0 shows that even for infinitesimal bg, a finite misalignment is
required to buckle the beam for any speed. For higher flexural stiffness ratios the curvature of the plot
changes, eventually reaching a point of high slope that suggests each speed has, at least in practical terms,
a maximum stiffness ratio above which no flexural–torsional buckling occurs. For all flexural stiffness ratios,
translation speed decreases the critical misalignments, and its impact increases with increasing speed. This is
illustrated by observing that the difference between two adjacent curves increases as speed increases.

3.2. Out-of-plane equilibria

When continuation is performed in misalignment, the planar equilibrium solution experiences pitchfork
bifurcations at the critical misalignments. The two bifurcated equilibria are out-of-plane solutions. The
L2-norms of the individual deformation components of y in (55), kyik ¼ ð

R 1

0
y2

i dxÞ1=2, are used to describe
the out-of-plane solutions.

The first four bifurcation branches for translation speeds of c = 0, 0.3, 0.6, and 0.9 are shown in Fig. 9. The
symmetry of the system about the E1–E3 plane is reflected in the symmetry of the pitchfork bifurcation
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branches. The solution along one branch is identical to the solution along the other branch except the out-of-
plane solution components v and h are reflected such that a(x) becomes �a(x) where a = v, h. With the mea-
sure khk the two out-of-plane branches of the pitchfork bifurcation lie on top of one another.

To obtain the form (54), the equilibrium equations are solved for the highest derivative terms. The resulting
four equations for u00, vIV, wIV, and h00 involve quotients. For certain out-of-plane solutions, the denominator
of one of these quotients approaches zero. These singularities cause loss of convergence during continuation
along the bifurcated branches. This limits the distance one can travel along the out-of-plane solution branches
using continuation. The singularities occur where the branches stop in Fig. 9.

Solutions on the first three branches for the baseline translation speed c = 0.3 are plotted in Figs. 10–12.
For speeds up to approximately c = 0.9 these post-buckled shapes change only slightly for the range of
misalignments explored. This is reflected in Fig. 9 where for speeds of c = 0, 0.3, and 0.6 all four
branches have almost identical shapes. Generally, the v and h components of the out-of-plane solutions ex-
hibit sharp change near the boundaries due to the clamped–clamped boundary conditions. Beam stresses
will be highest near the boundaries during flexural–torsional buckling. This sharp change causes the higher
derivatives of v to no longer be small near the boundaries. Recall that in the ordering scheme used to sim-
plify the equations of motion, v and its derivatives are assumed to be small, so the validity of the ordering
scheme breaks down near the boundaries for solutions further out on the branches. This may relate to the
singularities noted above, in which case, including higher order terms would enable further travel on the
branches.
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To check whether assumption {17} holds along the branches, the geometric torsion is compared to h 0.
Fig. 13 shows an example of this comparison for the solution in Fig. 10. Note that the geometric torsion is
two orders of magnitude lower than h 0. This result is typical for the out-of-plane solutions encountered in this
work.

The values of kak, where a = u, v, w, h, show how the deformation is distributed among the various degrees
of freedom. Fig. 14 illustrates this comparison for the first two bifurcation branches with c = 0.3. Although
the first two post-buckled shapes look very different (Figs. 10 and 11), Fig. 14 indicates the various L2-norms
are similar for the two branches, which suggests the deformation is distributed among the degrees of freedom
in a similar manner. The variation in kwk from the planar solution is extremely small indicating the w com-
ponent of the out-of-plane solution undergoes very little change when moving from a planar solution to an
out-of-plane one. This is consistent with the solutions in Figs. 10–12. In contrast, kuk varies from the planar
solution by first decreasing and then, for greater misalignments, increasing above that of the planar solution.
For the distance traveled on the bifurcation branches, the magnitude of kvk is always much greater than the
change in kwk compared to the planar solution (solid versus dashed lines). This is due to small bg. At buckling,
nearly all additional bending deflection is in the compliant E2 (v) direction; there is virtually no change in w

relative to the planar solution as a result of buckling.
Fig. 15 explores the effect of buckling the beam into the first out-of-plane equilibrium by increasing mis-

alignment past the critical value for a given speed and then increasing translation speed for fixed misalignment.
The labeled points in this figure correspond to the labeled points in Fig. 9. Points at the top of the plot where
the solution branches end are due to singularities that prevent further continuation. For speeds less than
approximately c = 0.9, the shapes of the equilibrium solutions remain fairly unchanged as speed is increased.
For higher speeds, the post-buckled shape changes, and this is reflected in the curves changing shape at the
right of Fig. 15. The equilibrium solution at point t from this region is given in Fig. 16. In contrast to the lower
speed regime, the post-buckled shape at point t in Fig. 15 experiences a less localized change at the boundaries
and a greater share of transverse deflection v compared to cross-sectional twist h. This trend may possibly oc-
cur at lower speeds and higher misalignments (for example branches i, j, k, l in Fig. 15) but the singularities
prevent exploring this.



Fig. 16. The solution at point t in Fig. 15. In the three-dimensional plot, the width of the beam is set to 0.04 to show cross-sectional
rotation.
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The post-buckled shapes may be arrived at through different sequences of misalignment and speed. For
example, the solution at point s in Fig. 9 can be reached by setting c = 0.3 and then increasing misalignment
such that one travels along the first out-of-plane solution branch in Fig. 9. Alternatively, the same solution can
be obtained by first setting c = 0 and then increasing misalignment such that one travels along the branch in
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Fig. 9 to point b. Then, by increasing speed from point b, Fig. 15 illustrates that point s is reached when
c = 0.3.

4. Conclusions

A nonlinear model is formulated to describe the motion of a translating, tensioned beam in three-dimen-
sional space. The model accounts for geometric and inertia nonlinearities arising from flexure in two planes,
torsion, and extension. The equations of motion indicate:

• Under the pulley misalignment boundary conditions of interest, the full nonlinear equations of motion
occur in an unbalanced (although well-posed) form with fewer boundary conditions than total order of spa-
tial derivatives. This form precludes use of standard numerical techniques. By neglecting geometric torsion
and using a physically appropriate ordering scheme, the equations of motion reduce to a balanced form in
which the number of boundary conditions matches the number of spatial derivatives.

• Under appropriate simplifying assumptions, the equations of motion reduce to equations in the literature
for flexural–extensional motion of a translating, tensioned beam.

Continuation and bifurcation software is used to obtain equilibrium solutions for ranges of speed, misalign-
ment, and flexural stiffness ratio. The equilibrium solutions indicate:

• When pulley misalignment occurs at speeds where the trivial equilibrium is stable, the initial equilibria are
planar with no cross-sectional twist or out-of-plane transverse deflection. The critical misalignments at
which new equilibria bifurcate from the planar equilibria decrease monotonically with increasing transla-
tion speed. The impact of speed on the critical misalignments is more pronounced as speed increases.

• The first critical misalignment is strongly influenced by the flexural stiffnesses ratio, bg. For infinitesimal bg

a finite misalignment is required to buckle the beam for any speed, while at high bg the results suggest there
is a maximum stiffness ratio above which no flexural–torsional buckling occurs. For the entire range of bg

considered, the first critical misalignment remains strongly influenced by translation speed, and this influ-
ence is more pronounced as speed increases.

• At each critical misalignment a pitchfork bifurcation occurs. The pitchfork branches represent out-of-plane
post-buckled configurations. Out-of-plane buckling deformation is predominantly transverse deflection in
the compliant plane and cross-sectional twist. The solutions indicate sharp curvature and hence high stres-
ses near the boundaries. Out-of-plane equilibria display small geometric torsion relative to cross-sectional
twist, consistent with the assumptions, and minimal change in in-plane transverse deflection compared to
the planar solutions.

Appendix A

The expressions for the bGa in (49) are
bGa ¼ Ka1cos2hþ Ka2 sin h cos hþ Ka3sin2hþ Ka4

1

2l
þ Ka5

bf

bg

; a ¼ u; v;w

bGh ¼ Kh1cos2hþ Kh2 cos h sin hþ Kh3sin2hþ Kh4 þ Kh5

bf

bg

ðA:1Þ
where the Kai are
Ku1 ¼ �f½w0h0v00 þ v0ðv000 þ w00h0Þ�c2 þ ½w0ðv00 _hþ _v0h0Þ þ v0ð _w0h0 þ 2 _v00 þ w00 _hÞ�cþ w0 _h _v0

þ v0ð€v0 þ _w0 _hÞgjf � f½w0ðw000 � h0v00Þ � v0h0w00�c2 þ ½w0ð� _v0h0 þ 2 _w00 � v00 _hÞ � v0ðw00 _hþ _w0h0Þ�c
þ w0ð €w0 � _v0 _hÞ � v0 _h _w0gjg þ ½w0h0v00 þ v0ðv000 þ w00h0Þ�bf ðA:2Þ
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Ku2 ¼ f½w0ð�v000 � 2w00h0Þ � v0ðw000 � 2h0v00Þ�c2 þ ½2w0ð� _w0h0 � _v00 � w00 _hÞ þ 2v0ðv00 _h� _w00 þ _v0h0Þ�c

� w0ð2 _w0 _hþ €v0Þ þ v0ð2 _v0 _h� €w0Þgjf þ f½w0ðv000 þ 2w00h0Þv0ðw000 � 2h0v00Þ�c2

þ ½2w0ð _w0h0 þ _v00 þ w00 _hÞ � 2v0ðv00 _h� _w00 þ _v0h0Þ�cþ w0ð2 _w0 _hþ €v0Þ � v0ð2 _v0 _h� €w0Þgjg

þ ½w0ðv000 þ 2w00h0Þ þ v0ðw000 � 2h0v00Þ�bf ðA:3Þ

Ku3 ¼ �f½w0ðw000 � h0v00Þ � v0h0w00�c2 þ ½w0ð� _v0h0 þ 2 _w00 � v00 _hÞ � v0ðw00 _hþ _w0h0Þ�cþ w0ð €w0 � _v0 _hÞ

� v0 _h _w0gjf � f½w0h0v00 þ v0ðv000 þ w00h0Þ�c2 þ ½w0ðv00 _hþ _v0h0Þ þ v0ð _w0h0 þ 2 _v00 þ w00 _hÞ�cþ w0 _h _v0

þ v0ð€v0 þ _w0 _hÞgjg þ ½w0ðw000 � h0v00Þ � v0h0w00�bf ðA:4Þ

Ku4 ¼ �
1

2
h02ð�2þ w02 þ v02Þlbf þ ½ð�2u0 � 2Þc2 � 2 _uc� v02 � w02 þ 2�l� 3

4
w04 � 3

4
v04

þ w02 1� 2u0 � 3

2
v02

� �
þ v02ð1� 2u0Þ þ 2u0 ðA:5Þ

Ku5 ¼ �½w0ð�w000 þ h0v00Þ þ v0h0w00�cos2h� ½w0ðv000 þ 2w00h0Þ þ v0ðw000 � 2h0v00Þ� cos h sin h

þ ½w0h0v00 þ v0ðv000 þ w00h0Þ�sin2h� 1

4
h02ð�2þ w02 þ v02Þ ðA:6Þ

Kv1 ¼ ½ðv000 þ w00h0Þc2 þ ð _w0h0 þ w00 _hþ 2 _v00Þcþ _w0 _hþ €v0�jf � ð _hþ h0cÞð _w0 þ w00cÞjg � ðv000 þ w00h0Þbf ðA:7Þ

Kv2 ¼ �½ð2h0v00 � w000Þc2 þ 2ð _v0h0 � _w00 þ v00 _hÞcþ 2 _v0 _h� €w0�jf

� ½ðw000 � 2h0v00Þc2 þ 2ð� _v0h0 þ _w00 � v00 _hÞc� 2 _v0 _hþ €w0�jg � ðw000 � 2h0v00Þbf ðA:8Þ

Kv3 ¼ �ð _hþ h0cÞð _w0 þ w00cÞjf þ ½ðv000 þ w00h0Þc2 þ ð _w0h0 þ 2 _v00 þ w00 _hÞcþ _w0 _hþ €v0�jg þ w00h0bf ðA:9Þ

Kv4 ¼ v0h02lbf þ 2lð� _vc� v0c2 þ v0Þ þ v03 þ ðw02 þ 2u0Þv0 ðA:10Þ

Kv5 ¼ w00h0cos2hþ ðw000 � 2v00h0Þ sin h cos hþ ð�v000 � w00h0Þsin2hþ 1

2
v0h02 ðA:11Þ

Kw1 ¼ ð _hþ h0cÞð _v0 þ v00cÞjf þ ½ðw000 � h0v00Þc2 þ ð2 _w00 � _v0h0 � v00 _hÞc� _v0 _hþ €w0�jg � v00h0bf ðA:12Þ

Kw2 ¼ 2
1

2
v000 þ w00h0

� �
c2 þ ðw00 _hþ _v00 þ _w0h0Þcþ _w0 _hþ 1

2
€v0

� �
jf

� 2
1

2
v000 þ w00h0

� �
c2 þ ðw00 _hþ _v00 þ _w0h0Þcþ _w0 _hþ 1

2
€v0

� �
jg � ðv000 þ 2w00h0Þbf ðA:13Þ

Kw3 ¼ ½ðw000 � h0v00Þc2 þ ð� _v0h0 þ 2 _w00 � v00 _hÞc� _v0 _hþ €w0�jf þ ð _hþ h0cÞð _v0 þ v00cÞjg � ðw000 � h0v00Þbf

ðA:14Þ
Kw4 ¼ w0h02lbf þ 2lð�w0c2 � c _wþ w0Þ þ w03 þ ð2u0 þ v02Þw0 ðA:15Þ

Kw5 ¼ �ðw000 � v00h0Þcos2hþ ðv000 þ 2w00h0Þ sin h cos h� v00h0sin2hþ 1

2
w0h02 ðA:16Þ

Kh1 ¼ �2v00w00bf � 2ðjg � jfÞð _w0 þ w00cÞð _v0 þ v00cÞ ðA:17Þ

Kh2 ¼ 2ðv002 � w002Þbf þ 2½ðv00 þ w00Þcþ _v0 þ _w0�½ðv00 � w00Þcþ _v0 � _w0�ðjg � jfÞ ðA:18Þ

Kh3 ¼ 2v00w00bf þ 2ðjg � jfÞð _w0 þ w00cÞð _v0 þ v00cÞ ðA:19Þ

Kh4 ¼ ½2w0w00h0 þ 2v0v00h0 þ ð2u0 þ v02 þ w02 þ 2lÞh00 þ 2u00h0�bf � 2ð€hþ 2 _h0cþ h00c2Þjn þ 2h00bn ðA:20Þ

Kh5 ¼ 2v00w00cos2h� 2ðv002 � w002Þ cos h sin h� 2v00w00sin2hþ 2w0w00h0

þ 2v0v00h0 þ ð2u0 þ v02 þ w02 þ 2lÞh00 þ 2u00h0 ðA:21Þ
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The expressions for the bH a in (50) are
bH a ¼ Pa1cos2hþPa2 sin h cos hþPa3sin2hþPa4

bf

bg

; a ¼ u; v;w

bH h ¼ � bf þ
bf

bg

� �
u0 þ 1

2
v02 þ 1

2
w02 þ l

� �
h0 þ ð _hþ h0cÞjnc� bnh

0
ðA:22Þ
where the Pai are
Pu1 ¼ v0v00bf � ½v0ð _v0 þ v00cÞjf þ w0ð _w0 þ w00cÞjg�c ðA:23Þ
Pu2 ¼ ðw0v00 þ v0w00Þbf þ ðjg � jfÞ½ðw0v00 þ v0w00Þcþ v0 _w0 þ _v0w0�c ðA:24Þ
Pu3 ¼ w0w00bf � ½w0ð _w0 þ w00cÞjf þ v0ð _v0 þ v00cÞjg�c ðA:25Þ
Pu4 ¼ ðw0 cos h� v0 sin hÞð�v00 sin hþ w00 cos hÞ ðA:26Þ
Pv1 ¼ �v00bf þ ð _v0 þ v00cÞjfc ðA:27Þ
Pv2 ¼ �w00bf � ð _w0 þ w00cÞðjg � jfÞc ðA:28Þ
Pv3 ¼ ð _v0 þ v00cÞjgc ðA:29Þ
Pv4 ¼ sin hðw00 cos h� v00 sin hÞ ðA:30Þ
Pw1 ¼ ð _w0 þ w00cÞjgc ðA:31Þ
Pw2 ¼ �v00bf � cðjg � jfÞð _v0 þ v00cÞ ðA:32Þ
Pw3 ¼ �w00bf þ ð _w0 þ w00cÞjfc ðA:33Þ
Pw4 ¼ cos hð�w00 cos hþ v00 sin hÞ ðA:34Þ
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